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Maximal symmetry group of the HamiltonJacobi equation: 
relativistic particle in flat spacetime 
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Department of Physics, University of Kalyani, Kalyani, West Bengal, 741235, India 

Received 30 July 1985 

Abstract. Lie’s extended group method has been used to obtain the maximal symmetry 
group of the Hamilton-Jacobi equation for a relativistic particle moving in Rat spacetime. 
For a massive particle it is the 21-parameter inhomogeneous pseudo-orthogonal group 
IO(4 , l )  of signature ( 4 , l ) .  For a zero-mass particle like a photon or a neutrino this group 
is an infinite-parameter Lie group with an infinite-parameter invariant subgroup such that 
the factor group is isomorphic to the inhomogeneous pseudo-orthogonal group IO(3 , l )  
of signature ( 3 , l ) .  

1. Introduction 

From the point of view of physics a problem is completely solved if the solutions of 
the corresponding dynamical equation of motion are known. In obtaining these 
solutions and classifying them, the knowledge of the full symmetry group of the 
dynamical equation of motion is, perhaps, of the greatest help (McIntosh 1971). In 
a series of papers Leach and Prince (Prince and Leach 1980, Prince and Eliezer 1980, 
1981, Leach 1981, Prince 1983) solved the classical problem of Kepler motion and 
that of the N-dimensional harmonic oscillator. The one-dimensional classical har- 
monic oscillator problem was also discussed by Lutzky (1978) and Wulfman and 
Wyboume (1976). In all these problems the Lagrangian equation or the Hamilton 
canonical equation was considered and Lie’s extended group method (Sattinger 1977, 
Hamermesh 1984, Rudra 1984) was used to obtain the maximal symmetry group of 
the corresponding dynamical equation of motion. 

Here we apply Lie’s method to obtain the maximal symmetry group of the dynamical 
equation of motion for a relativistic particle in flat spacetime. For the relativistic 
problem the Hamilton-Jacobi equation is the most suitable dynamical equation of 
motion, since the time and the space coordinates are treated on an equal footing. Thus 
we have considered this equation of motion. Our analysis shows that, for a massive 
particle, the maximal symmetry group is the 21-parameter inhomogeneous pseudo- 
orthogonal group IO(4, l )  that keeps the equation 24=1 (dqi)2 - (dq5)’= 0 invariant. 
For zero-mass particles, like the photon and the neutrino, the maximal symmetry group 
is an infinite-parameter Lie group with an infinite-parameter invariant subgroup such 
that the factor group is isomorphic to the inhomogeneous pseudo-orthogonal group 
IO(3, l )  that keeps the equation E:=, (dqi)2 - (dq4)’ = 0 invariant. 

In § 2 we give a brief summary of Lie’s method for obtaining the maximal symmetry 
group of a differential equation. In § 3 we apply this method to the Hamilton-Jacobi 
equation for a relativistic particle in flat spacetime. 
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2. Lie's extended group method 

In this section we summarise Lie's extended group method. By maximal symmetry 
group we mean the group G with generators X for transformations in the space of n 
independent variables q", i = 1, .  . . , n and s dependent variables Vk, k = 1, .  . . , s, 

where 6' and (Pk are the vectors of the generators (Eisenhart 1961). These transforma- 
tions are such that the forms of the set of partial differential equations 

A a ( q , Y ;  r ) = O ,  a = 1, . . . , p ,  (2) 

where r denotes the highest order of partial derivatives of q, are kept invariant. The 
algorithm for obtaining the vectors of the generators is the following. We construct 
the rth extension of X 

Here 

.\U: = a q k / a q i ,  ( J ,  i ) = ( j l , .  . . , j i - l , j ,+ l , j i+ l , .  . .,jn). (4) 

In all these expressions, while taking the partial derivatives, qi ,  qk and Vf are to be 
considered as independent variables. 

X is a generator of G if 

a = 1, . . . , p .  ( 5 )  X'') A" = 0, 

We use equation (2) in the left-hand side of equation ( 5 )  and obtain the coefficients 
of different powers and products of the different orders of partial derivatives of Tk. 
When we separately equate these coefficients to zero, we get a set of partial differential 
equations for 6 and cp. The solutions of these partial differential equations give us the 
most general form of X and hence the maximal symmetry group G .  

3. The HamiltonJacobi equation in flat spacetime 

For a particle of mass m in flat spacetime the Hamilton-Jacobi equation (Landau and 
Lifshitz 1962) is 

S S - C  S 2 , - ( m c ) 2 = 0 .  
OL 

Here the independent coordinates are qa (a = 1,2,3)  and 7 = cf, the action S is the 
dependent variable and c is the speed of light in vacuum. The subscript Greek letters 
a and T denote partial derivatives with respect to qa and 7. If we divide S by mc and 



Maximal symmetry group of the Hamilton- Jacobi equation 2949 

call the resulting quantity the new normalised action (retaining the same symbol S), 
then for this normalised action the differential equation is 

(6) A =  SS-C S', - 1 = O .  

x = ( 'X '+C ~ " X " + c p X S ,  

X ' =  -i alar, X" = -i a / a q U ,  X' = -i alas. ( 7 )  

5: = 5:, 5: = 5:, 
cpr = ti, CPU = -tz, Qs = 5:, Va. ( 8 b )  

" 

The generator for the maximal symmetry group for equation (6) is written as 

(1 

where 

Equation ( 5 )  will give us the following partial differential equations for 5 and cp: 

5: + 5; = 0, V a ,  P, a # P, 

From ( 8 a )  we find that all third-order partial derivatives of 5' and 5" vanish: 

a3 5 " " / ( a r ) " 4 n  (aq")" .  =o, n,+C n, = 3. 
(1 (1 

Thus the general form of 5 consistent with ( 8 a )  and ( 9 )  is 

6' = a,( S )  + C b3+p(  S)qP + b ( S ) r  + C (  S ) ( r 2 +  r 2 ) / 2  + r CP (SI@, 

5" = a , ( S ) + b ( S ) q " + C  e u B y b y ( S ) q P + b 3 + , ( S ) r -  c , ( S ) ( r 2 - . r 2 ) / 2  
P P 

Pv 

( 9 )  

We also find that the second partial derivatives of 5 with respect to qU and r are 
independent of S. Thus C,(S) and C(S) are constants 

Ca(S) = C", C(S) = c. (11) 
We now expand p ( q ,  r, S )  in power series of S with coefficients as functions of q" 

and r :  

From ( 8 6 )  we see that cpeSs = cpTSs = 0. Thus dn( q, r )  for n 2 2 are independent of q" 
and r :  

00 

cp = do(q,  r )+d , (q ,  r ) S +  d , S " / n ! .  (13) 
n = 2  

We now note that vns = 0, i.e. do( q, r )  and d , (  q, r )  are of the form 

dn(q ,  7) = d L ( q )  + d%r ) ,  n =0, 1. 

Using the relations cpt ,  = - c p U u  = cpss we obtain 

cp = ( d o + c  dtq"  + d t r  - d 2 ( r 2 -  r 2 )  
(1 

daq" + d : r  - d3( r2 - r 2 )  S +  d 2 S 2 / 2 !  + d , S 3 / 3 ! .  
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Further use of ( 8 a )  and ( 8 b )  finally gives us 
5' = (a:+ d i S +  C o S 2 / 2 )  + ( d ,  + d 2 S ) r + C  by+PqP 

P 

+ C0(r2+ r 2 ) / 2 +  r CO,@, 
P 

5" = - ( a i  + d,"S+ C i S 2 / 2 ) + ( d ,  + d2S)q" + e u P y b ~ q B  + b!+,r 
BY 

- c O , ( r 2 - r 2 ) / 2 + q n  CO,qP+Coq"r, 
P 

S + f d 2 S 2 .  

The maximal symmetry group G of the Hamilton-Jacobi equation ( 6 )  then has the 

X' = -i alar,  
following 21 generators: 

X" = -i alas",  
X" = -i alas, x 0 = s x " + 7 x ' + ~ q " x " ,  

U 

X; = euPyqPXy, X :  = q"XT + rxn, 
X i  = -f( r2 - r2 + s')x" + sax,, 
x ~ = f ( r 2 - r 2 + S 2 ) ~ + + 7 X 0 ,  
xi= - f ( r 2 - r * + ~ 2 ) ~ S + ~ ~ 0 ,  

x; = q"X" - SX", 

P Y  

x ; = r x " + s x r ,  
with non-vanishing commutators 
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are isomorphic to the generators of the inhomogeneous pseudo-orthogonal group 
1)  that keep the equation e",=, (dq")2 - ( d q 5 ) 2  = 0 invariant. The centre of the 
consists only of the identity operator. 
the case of zero-mass particles, the corresponding Hamilton-Jacobi equation is 

A Z ( S , ) ~ - ~ ( S , ) ~ = O ,  (19) 
U 

where S is Hamilton's action. The partial differential equations for 5 and cp are 

5:: = 5 X V a ) ,  5: = 5 V a ) ,  5;+ 55 =O(a + P I ,  (Pm = 0 = cp0,(Va). 
(20) 

An analysis similar to that given above gives the following velocity vectors: 

5' = a4( S )  + CP( S)qp,  

5" = a , ( S ) + b ( S ) q " + C  emPrb, (S)qP + b 3 + - ( S ) 7 -  C,(S)(r2-72)/2 

b3+p(  S ) q P  + b (  S)7 + C( S ) (  r2 + ~ ~ ) / 2  + 7 
P P 

PY 

+ q" c q 3 ( S ) q P  + C(S)q"7, 
P 
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It is seen that the subgroup G, with the generators for n 3 1 is an invariant subgroup 
of G. The factor group H =G/Ga consists of the generators with n = 0. H is the 
15-parameter inhomogeneous pseudo-orthogonal group IO(3 , l )  keeping the equation 

3 

(dq")2-(dq4)2=0 
n = l  

invariant, together with the scaling transformation of the action. We can call this 
subgroup the physical symmetry group of the problem, since the other pieces of G 
can be mapped to H. This mapping, however, is not a homomorphism. The problem 
of whether the whole group G or the subgroup H is of real importance is not, of 
course, prejudged. 

References 

Eisenhart L P 1961 Continuous groups of transformations (New York: Dover) 
Hamermesh M 1984 Group theoretical methods in physics ed G Denardo, G Ghirardi and T Weber (Lecture 

Landau L D and Lifshitz E M 1962 Classical theory offields revised 2nd edn (Oxford: Pergamon) 
Leach P G L 1981 J. Aust. Math. Soc. B 23 173 
Lutzky M 1978 J. Phys. A :  Math. Gen. 11 249 
McIntosh H V 1971 Group theory and its applications vol 2, ed E M Loebl (New York; Academic) p 75 
Prince G E 1983 Bull. Aust. Math. Soc. 27 53 
Prince G E and Eliezer C J 1980 J. Phys. A :  Math. Gen. 13 815 
- 1981 J. Phys. A: Math. Gen. 14 587 
Prince G E and Leach P G L 1980 Hadronic J. 3 941 
Rudra P 1984 Pramana 23 445 
Sattinger D H 1977 Group theoretical methods in bifurcation theory (Berlin: Springer) 
Wulfman C E and Wyboume B G 1976 J. Phys. A :  Math. Gen. 9 507 

notes in physics 201) (Berlin: Springer) p 39 


